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Abstract
Kepler and Kagan (1991 Phys. Rev. Lett. 66 847) derived a geometric phase
shift in dissipative limit cycle evolution. This effect was considered as an
extension of the geometric phase in classical mechanics. We show that the
opposite is also true, namely, this geometric phase can be identified with the
classical mechanical Hannay angle in an extended phase space. Our results
suggest that this phase can be generalized to a stochastic evolution with an
additional noise term in evolution equations.

PACS numbers: 03.65.Vf, 05.10.Gg, 05.40.Ca

The Berry phase in quantum mechanics [1] appeared as a unifying concept. It provided similar
mathematical background to seemingly very different quantum mechanical phenomena. After
its discovery, various geometric phases were found even beyond quantum mechanics, for
example, in classical mechanics [2], hydrodynamics [3], dissipative kinetics [4, 5] and
stochastic processes [6–9]. It was possible to relate some of these phases to each other.
For example, the Hannay angle can be derived in the classical limit of the quantum mechanical
Berry phase [10]. Relations and hierarchy among other geometric phases remain not well
understood. In this communication we partly fill this gap, and demonstrate the relation of the
geometric phase in dissipative limit cycle evolution to the classical mechanical Hannay angle.
Our approach is similar to the one employed in [7] to introduce geometric phases in stochastic
processes, which suggests that further connections among various geometric phases can be
found.

In [4], Kagan et al considered a dissipative system that evolves to a limit cycle so that after
fast relaxation processes the only one angle degree of freedom φ(t) is relevant and evolves
according to

dφ

dt
= �(φ,µ), (1)
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where µ is the vector of slowly time-dependent parameters and � is the instantaneous rotation
frequency. Kagan et al introduced another angle variable

θ(φ, µ) =
∫ φ

0

ω(µ)

�(φ′, µ)
dφ′, (2)

where

ω(µ) =
(∫ 2π

0

1

�(φ,µ)

dφ

2π

)−1

, (3)

and showed that under the adiabatic cyclic evolution of µ during time T the phase (2) becomes
the sum of dynamic and geometric parts, i.e.

θ = θdyn + θgeom, (4)

where

θdyn =
∫ T

0
dtω(µ(t)), (5)

and

θgeom =
∮

A · dµ, A =
∫ 2π

0

dφ

2π

ω(µ(t))

�(φ,µ)
∂µθ(φ, µ). (6)

The authors of [4] argued that the Hannay angle in classical mechanics is merely a special
case of this phase. Below we show that in some sense the opposite is also true, namely that
the geometric phase (6) follows from canonical equations of motion and is identified with
the Hannay angle [10]. Let us introduce the variable �, which we assume to be canonically
conjugated to φ with the Hamiltonian

H(�, φ) = ��(φ,µ). (7)

The phase evolution (1) then follows from equation

dφ

dt
= ∂H

∂�
. (8)

In the case of time-independent µ, its conjugated equation

d�

dt
= −∂H

∂φ
(9)

has a solution

� = E(µ)

�(φ,µ)
, (10)

where E is the energy. The adiabatically conserved quantity is the action defined by

I = 1

2π

∫ 2π

0
�(φ,µ) dφ = 1

2π

∫ 2π

0

E(µ)

�(φ,µ)
dφ, (11)

from which follows that

E(µ) = Iω(µ), (12)

and

� = �(I, φ) = I
ω(µ)

�(φ,µ)
. (13)

Expression for the canonically conjugated to I angle variable θ reads

θ = ∂

∂I

(∫ φ

0
�(I, φ′) dφ′

)
=

∫ φ

0

ω(µ)

�(φ′, µ)
dφ′. (14)
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Comparing (2) and (14) we find that the angle variable θ introduced in [4] is just a canonical
angle variable in the model with the Hamiltonian H(�, φ). This, in fact, justifies the choice
of variables made in [4]. After adiabatic evolution in the parameter space, the angle variable
becomes a sum of the dynamic part and the Hannay angle [10]:

θ = θdyn + θH , (15)

where

θdyn = ∂

∂I

∫ T

0
dtE(µ(t)) =

∫ T

0
ω(µ(t)) dt, (16)

θH = − ∂

∂I

∮
dµ〈�(I, φ(θ, µ)) ∂µφ(θ, µ)〉θ =

∮
A · dµ, (17)

and the averaging is over one fast cycle of θ angle. The connection A explicitly reads

A = −
∫ 2π

0

dθ

2π

ω(µ)

�(φ(θ, µ), µ)
∂µφ(θ, µ). (18)

The last step is to show that connections in (18) and (6) are the same. For this note that

dφ(θ, µ)

dt
= � = ∂φ

∂θ

dθ

dt
+

∂φ

∂µ

dµ

dt
, (19)

and that
dθ

dt
= ω(µ) +

∂θ

∂µ

dµ

dt
,

∂φ

∂θ
= �

ω
, (20)

which lead to

∂µφ = −∂φ

∂θ
∂µθ. (21)

Substituting this into (18) and switching to integration over φ one recovers equation (6).
In conclusion, we established a relation between the classical mechanical Hannay angle

and the geometric phase in dissipative limit cycle evolution. The Hannay angle interpretation
of the phase in [4] relates it also to geometric phases in stochastic kinetics, introduced in [7]
by similar variable doubling technique, which may be practically interesting. The doubling
of variables can be used to promote not only dissipative but also stochastic equations to
the Hamiltonian evolution [11]. Thus, it is possible to derive Hamiltonian formulation for
equation (1) with an additional noise term. However, the physical meaning of the resulting
Hannay angle remains an open problem.
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